ID photo of Ciro Santilli taken in 2013 right eyeCiro Santilli OurBigBook logoOurBigBook.com  Sponsor 中国独裁统治 China Dictatorship 新疆改造中心、六四事件、法轮功、郝海东、709大抓捕、2015巴拿马文件 邓家贵、低端人口、西藏骚乱
The key thing in a good system of units is to define units in a way that depends only on physical properties of nature.
Ideally (or basically necessarily?) the starting point generally has to be discrete phenomena, e.g.
What we don't want is to have macroscopics measurement artifacts, (or even worse, the size of body parts! Inset dick joke) as you can always make a bar slightly more or less wide. And even metals evaporate over time! Though the mad people of the Avogadro project still attempted otherwise well into the 2010s!
Standards of measure that don't depend on artifacts are known as intrinsic standards.

Unit of measurement

words: 49 articles: 1
Tagged
A dimension in a system of units is something like length, weight or time, without considering how to assign numerical values ot them, which requires units of measurement such as the meter, kilogram or second.
Talking about dimensions can be useful when explaining new derived units without worrying about the exact units involved. See e.g. this table: en.wikipedia.org/w/index.php?title=Lumen_(unit)&oldid=1233810964#SI_photometric_units
Tagged

List of systems of units

words: 873 articles: 43

International System of Units (SI)

words: 873 articles: 42
The key is to define only the minimum number of measures: if you define more definitions become over constrained and could be inconsistent.
Learning the modern SI is also a great way to learn some interesting Physics.
Tagged
Video 1. Source.
Great overview of the earlier history of unit standardization.
Gives particular emphasis to the invention of gauge blocks.
web.archive.org/web/20181119214326/https://www.bipm.org/utils/common/pdf/CGPM-2018/26th-CGPM-Resolutions.pdf gives it in raw:
  • the unperturbed ground state hyperfine transition frequency of the caesium-133 atom is 9 192 631 770 Hz
  • the speed of light in vacuum c is 299 792 458 m/s
  • the Planck constant h is 6.626 070 15 × J s
  • the elementary charge e is 1.602 176 634 × C
  • the Boltzmann constant k is 1.380 649 × J/K
  • the Avogadro constant NA is 6.022 140 76 × mol
  • the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lm/W,
The breakdown is:
  • actually use some physical constant:
    • the unperturbed ground state hyperfine transition frequency of the caesium-133 atom is 9 192 631 770 Hz
      Defines the second in terms of caesium-133 experiments. The beauty of this definition is that we only have to count an integer number of discrete events, which is what allows us to make things precise.
    • the speed of light in vacuum c is 299 792 458 m/s
      Defines the meter in terms of speed of light experiments. We already had the second from the previous definition.
    • the Planck constant h is 6.626 070 15 × J s
      Defines the kilogram in terms of the Planck constant.
    • the elementary charge e is 1.602 176 634 × C
      Defines the Coulomb in terms of the electron charge.
  • arbitrary definitions based on the above just to match historical values as well as possible:
    • the Boltzmann constant k is 1.380 649 × J/K
      Arbitrarily defines temperature from previously defined energy (J) to match historical values.
    • the Avogadro constant NA is 6.022 140 76 × mol
      Arbitrarily defines the mol to match historical values. In particular, the kilogram is not an exact multiple of the weight of an atom of hydrogen.
    • the luminous efficacy of monochromatic radiation of frequency 540 × 1012 Hz, Kcd, is 683 lm/W
      Arbitrarily defines the Candela in terms of previous values to match historical records. The most useless unit comes last as you'd expect.
Tagged
Ampere
words: 74 articles: 1
Unit of electric current.
Affected by the ampere in the 2019 redefinition of the SI base units.
TODO how does basing it on the elementary charge help at all? Can we count individual electrons going through a wire? www.nist.gov/si-redefinition/ampere/ampere-quantum-metrology-triangle by the NIST explains that is it basically due to the following two quantized solid-state physics phenomena/experiments that allows for extremely precise measurements of the elementary charge:
Kilogram
words: 31 articles: 2
Unit of mass.
Defined in the 2019 redefinition of the SI base units via the Planck constant. This was possible due to the development of the kibble balance.
Figure 1. Source.
Kibble balance
words: 12
Measures weight from a voltage.
www.bipm.org/documents/20126/28432564/working-document-ID-11315/8532173e-8bae-2bdf-b74a-cb48296b4e67
TODO appears to rely on both quantum Hall effect and Josephson effect
Luminous intensity
words: 61 articles: 3
Candela
words: 61 articles: 2
Candela is Lumen density per solid angle. A sphere emitting 1 Candela uniformly in all directions produces 4π Lumen total power.
Bibliography:
Lumen (unit)
words: 40 articles: 1
1 Watt equals 683 Lumens of light power at wavelength 555 nm. At other wavelengths 1 Watt is less Lumens as it takes into account the sensitivity of the average human eye.
Candela is lumen density per solid angle.
Bibliography:
Time
words: 316 articles: 14
Frequency
words: 10 articles: 3
Hertz (1857-1894, Hz)
words: 10 articles: 1
Named after radio pioneer Heinrich Hertz.
Mega-Hertz, i.e. a million Hertz.
Clock
words: 306 articles: 3
Quartz clock
words: 51
Video 2.
How a quartz watch works by Steve Mould (2017)
Source. Mentions feedback loop loop with the quartz tuning fork for the piezoelectricity and an amplifier. Also mentions the choice of 32768 Hertz () as the first power of 2 that is outside of the human hearing range, and then how a frequency divider is used to reduce the frequency to get the second counter.
Atomic clock
words: 255 articles: 1
How atomic clock works? answer by Ciro Santilli on Physics Stack Exchange.
Video 3.
How an atomic clock works, and its use in the global positioning system (GPS) by EngineerGuy (2012)
Source. Shows how conceptually an atomic clock is based on a feedback loop of two hyperfine structure states of caesium atoms (non-radioactive caesium-133 as clarified by the Wikipedia page). Like a quartz clock, it also relies on the piezoelectricity of quartz, but unlike the quartz clock, the quartz is not shaped like a tuning fork, and has a much larger resonating frequency of about 7 MHz. The feedback is completed by producing photons that resonate at the right frequency to excite the caesium.
Video 4.
Inside the HP 5061A Cesium Clock by CuriousMarc (2020)
Source.
A similar model was used in the Hafele-Keating experiment to test special relativity on two planes flying in opposite directions. Miniaturization was key.
Contains a disposable tube with 6g of Caesium. You boil it, so when it runs out, you change the tube, 40k USD. Their tube is made by Agilent Technologies, so a replacement since that opened in 1999, and the original machine is from the 60s.
Detection is done with an electron multiplier.
youtu.be/eOti3kKWX-c?t=1166 They compare it with their 100 dollar GPS disciplined oscillator, since GPS satellites have atomic clocks in them.
Video 5.
Quick presentation of the atomic clock at the National Physical Laboratory (2010)
Source. Their super accurate setup first does laser cooling on the caesium atoms.
Uses the frequency of the hyperfine structure of caesium-133 ground state, i.e spin up vs spin down of its valence electron , to define the second.
International System of Units definition of the second since 1967, because this is what atomic clocks use.
TODO why does this have more energy than the hyperfine split of the hydrogen line given that it is further from the nucleus?
Why caesium hyperfine structure is used:
Unit of time
articles: 5
Day (d)
articles: 1
Length
words: 4 articles: 7
Meter
articles: 4
Gauge block
words: 4
Highlighted at the Origins of Precision by Machine Thinking (2017).

Natural units

words: 15 articles: 1
A series of systems usually derived from the International System of Units that are more convenient for certain applications.

Ancestors (4)

  1. Physics
  2. Natural science
  3. Science
  4. Home