When Ciro Santilli was studying electronics at the University of São Paulo, the courses, which were heavily inspired from the USA 50's were obsessed by this one! Thinking about it, it is kind of a cool thing though.
That Wikipedia page is the epitome of Wikipedia failure to explain things in a way that is of any interest to any learner. Video 24. "Tutorial on LC resonant circuits by w2aew (2012)" is the opposite.
Tutorial on LC resonant circuits by w2aew (2012)
Source. - youtu.be/hqhV50852jA?t=239 series LC circuit on a breadboard driven by an AC source. Shows behaviour on oscilloscope as source frequency is modified. We clearly see voltage going to zero at resonance. This is why thie circuit can be seen as a filter.
- youtu.be/hqhV50852jA?t=489 shows the parallel LC circuit. We clearly see current reaching a maximum on resonance.
LC circuit dampened oscillations on an oscilloscope by Queuerious Guy (2014)
Source. Finally a video that shows the oscillations without a driving AC source. The dude just move wires around on his breadboard manually, first charging the capacitor and then closing the LC circuit, and is able to see damped oscillations on the oscilloscope.Introduction to LC Oscillators by USAF (1974)
Source. - youtu.be/W31CCN_ZF34?t=740 mentions that LC circuit formation is the root cause for Audio feedback with a quick demo. Not very scientific, but cool.
LC circuit by Eugene Khutoryansky (2016)
Source. Exactly what you would expect from an Eugene Khutoryansky video. The key insight is that the inductor resists to changes in current. So when current is zero, it slows down the current. And when current is high, it tries to keep it going, which recharges the other side of the capacitor.