Ciro Santilli $$ Sponsor Ciro $$ 中国独裁统治 China Dictatorship 新疆改造中心、六四事件、法轮功、郝海东、709大抓捕、2015巴拿马文件 邓家贵、低端人口、西藏骚乱
🔗
🔗
Video 93. Deriving the QED Lagrangian by Dietterich Labs (2018) Source.
As mentioned at the start of the video, he starts with the Dirac equation Lagrangian derived in a previous video. It has nothing to do with electromagnetism specifically.
He notes that that dirac Lagrangian, besides being globally Lorentz invariant, it also also has a global invariance.
However, it does not have a local invariance if the transformation depends on the point in spacetime.
He doesn't mention it, but I think this is highly desirable, because in general local symmetries of the Lagrangian imply conserved currents, and in this case we want conservation of charges.
To fix that, he adds an extra gauge field (a field of matrices) to the regular derivative, and the resulting derivative has a fancy name: the covariant derivative.
Then finally he notes that this gauge field he had to add has to transform exactly like the electromagnetic four-potential!
So he uses that as the gauge, and also adds in the Maxwell Lagrangian in the same go. It is kind of a guess, but it is a natural guess, and it turns out to be correct.
🔗
🔗

Ancestors

🔗