Ciro Santilli  Sponsor 中国独裁统治 China Dictatorship 新疆改造中心、六四事件、法轮功、郝海东、709大抓捕、2015巴拿马文件 邓家贵、低端人口、西藏骚乱
Intuition, please? Example? The key motivation seems to be related to Hamiltonian mechanics. The two arguments of the bilinear form correspond to each set of variables in Hamiltonian mechanics: the generalized positions and generalized momentums, which appear in the same number each.
Seems to be set of matrices that preserve a skew-symmetric bilinear form, which is comparable to the orthogonal group, which preserves a symmetric bilinear form. More precisely, the orthogonal group has:
and its generalization the indefinite orthogonal group has:
where S is symmetric. So for the symplectic group we have matrices Y such as:
where A is antisymmetric. This is explained at: They also explain there that unlike as in the analogous orthogonal group, that definition ends up excluding determinant -1 automatically.
Therefore, just like the special orthogonal group, the symplectic group is also a subgroup of the special linear group.


  1. Classical group
  2. Important Lie group
  3. Lie group
  4. Differential geometry
  5. Geometry
  6. Area of mathematics
  7. Mathematics
  8. Ciro Santilli's Homepage