One major difference between the elliptic curve over a finite field or the elliptic curve over the rational numbers the elliptic curve over the real numbers is that not every possible generates a member of the curve.
This is because on the Equation 1. "Definition of the elliptic curves" we see that given an , we calculate , which always produces an element .
But then we are not necessarily able to find an for the , because not all fields are not quadratically closed fields.
For example: with and , taking gives:and therefore there is no that satisfies the equation. So is not on the curve if we consider this elliptic curve over the rational numbers.
That would also not belong to Elliptic curve over the finite field , because doing everything we have:Therefore, there is no element such that or , i.e. and don't have a multiplicative inverse.
For the real numbers, it would work however, because the real numbers are a quadratically closed field, and .
For this reason, it is not necessarily trivial to determine the number of elements of an elliptic curve.