We map each point and a small enough neighbourhood of it to $R_{n}$, so we can talk about the manifold points in terms of coordinates.

Does not require any further structure besides a consistent topological map. Notably, does not require metric nor an addition operation to make a vector space.

A notable example of a Non-Euclidean geometry manifold is the space of generalized coordinates of a Lagrangian. For example, in a problem such as the double pendulum, some of those generalized coordinates could be angles, which wrap around and thus are not euclidean.