ID photo of Ciro Santilli taken in 2013 right eyeCiro Santilli OurBigBook logoOurBigBook.com  Sponsor 中国独裁统治 China Dictatorship 新疆改造中心、六四事件、法轮功、郝海东、709大抓捕、2015巴拿马文件 邓家贵、低端人口、西藏骚乱
There are two cases:
  • (topological) manifolds
  • differential manifolds
Questions: are all compact manifolds / differential manifolds homotopic / diffeomorphic to the sphere in that dimension?
  • for topological manifolds: this is a generalization of the Poincaré conjecture.
    Original problem posed, for topological manifolds.
    Last to be proven, only the 4-differential manifold case missing as of 2013.
    Even the truth for all was proven in the 60's!
    Why is low dimension harder than high dimension?? Surprise!
    AKA: classification of compact 3-manifolds. The result turned out to be even simpler than compact 2-manifolds: there is only one, and it is equal to the 3-sphere.
    For dimension two, we know there are infinitely many: classification of closed surfaces
  • for differential manifolds:
    Not true in general. First counter example is . Surprise: what is special about the number 7!?
    Counter examples are called exotic spheres.
    Totally unpredictable count table:
    DimensionSmooth types
    11
    21
    31
    4?
    51
    61
    728
    82
    98
    106
    11992
    121
    133
    142
    1516256
    162
    1716
    1816
    19523264
    2024
    is an open problem, there could even be infinitely many. Again, why are things more complicated in lower dimensions??

Ancestors (6)

  1. Homotopy
  2. Topology
  3. Calculus
  4. Area of mathematics
  5. Mathematics
  6. Home