We looking at the definition the orthogonal group is the group of all matrices that preserve the dot product, we notice that the dot product is one example of positive definite symmetric bilinear form, which in turn can also be represented by a matrix as shown at: Section "Matrix representation of a symmetric bilinear form".

By looking at this more general point of view, we could ask ourselves what happens to the group if instead of the dot product we took a more general bilinear form, e.g.:The answers to those questions are given by the Sylvester's law of inertia at Section "All indefinite orthogonal groups of matrices of equal metric signature are isomorphic".

- $I_{2}$: another positive definite symmetric bilinear form such as $(x_{1},x_{2})_{T}(y_{1},y_{2})=2x_{1}y_{1}+x_{2}y_{2}$?
- $I_{−}$ what if we drop the positive definite requirement, e.g. $(x_{1},x_{2})_{T}(y_{1},y_{2})=−x_{1}y_{1}+x_{2}y_{2}$?

- The orthogonal group is the group of all matrices that preserve the dot product | 72, 244, 1
- Definition of the orthogonal group | 8, 391, 4
- Orthogonal group | 0, 1k, 22
- Important Lie group | 0, 5k, 65
- Lie group | 278, 7k, 97
- Differential geometry | 12, 7k, 98
- Geometry | 0, 9k, 154
- Mathematics | 17, 34k, 763
- Ciro Santilli's Homepage | 262, 238k, 4k