The dual space of a vector space , sometimes denoted , is the vector space of all linear forms over with the obvious addition and scalar multiplication operations defined.
Since a linear form is completely determined by how it acts on a basis, and since for each basis element it is specified by a scalar, at least in finite dimension, the dimension of the dual space is the same as the , and so they are isomorphic because all vector spaces of the same dimension on a given field are isomorphic, and so the dual is quite a boring concept in the context of finite dimension.
Infinite dimension seems more interesting however, see: en.wikipedia.org/w/index.php?title=Dual_space&oldid=1046421278#Infinite-dimensional_case
One place where duals are different from the non-duals however is when dealing with tensors, because they transform differently than vectors from the base space .